Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Gene Ther ; 34(9-10): 459-470, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36310439

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins (µDys) are currently in clinical trials. They all carry H1 and H4. In this study, we investigated whether these two hinges are essential for µDy function in murine DMD models. Three otherwise identical µDys were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ΔH1 (without H1), and ΔH4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent µDys expression in total muscle lysate. However, only H1/H4 and ΔH1 showed correct sarcolemmal localization. ΔH4 mainly existed as sarcoplasmic aggregates. H1/H4 and ΔH1, but not ΔH4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ΔH1, but not by ΔH4. Next, we compared H1/H4 and ΔH1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months postinjection, H1/H4 significantly outperformed ΔH1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable electrocardiography improvements. We conclude that H4 is essential for µDys function and H1 facilitates force production. Our findings will help develop next-generation µDys gene therapy.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Ratones , Animales , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Terapia Genética
2.
Hum Gene Ther ; 33(9-10): 518-528, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35350865

RESUMEN

Adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR) editing holds promise to restore missing dystrophin in Duchenne muscular dystrophy (DMD). Intramuscular coinjection of CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA) vectors resulted in robust dystrophin restoration in short-term studies in the mdx mouse model of DMD. Intriguingly, this strategy failed to yield efficient dystrophin rescue in muscle in a long-term (18-month) systemic injection study. In-depth analyses revealed a selective loss of the gRNA vector after long-term systemic, but not short-term local injection. To determine whether preferential gRNA vector depletion is due to the mode of delivery (local vs. systemic) or the duration of the study (short term vs. long term), we conducted a short-term systemic injection study. The gRNA (4e12 vg/mouse in the 1:1 group or 1.2e13 vg/mouse in the 3:1 group) and Cas9 (4e12 vg/mouse) vectors were coinjected intravenously into 4-week-old mdx mice. The ratio of the gRNA to Cas9 vector genome copy dropped from 1:1 and 3:1 at injection to 0.4:1 and 1:1 at harvest 3 months later, suggesting that the route of administration, rather than the experimental duration, determines preferential gRNA vector loss. Consistent with our long-term systemic injection study, the vector ratio did not influence Cas9 expression. However, the 3:1 group showed significantly higher dystrophin expression and genome editing, better myofiber size distribution, and a more pronounced improvement in muscle function and electrocardiography. Our data suggest that the gRNA vector dose determines the outcome of systemic AAV CRISPR therapy for DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Dependovirus/metabolismo , Distrofina/genética , Distrofina/metabolismo , Edición Génica/métodos , Terapia Genética/métodos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
3.
Gene Ther ; 29(6): 333-345, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34611321

RESUMEN

Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (µDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free µDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type µDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Distrofina/genética , Terapia Genética , Vectores Genéticos/genética , Ratones , Ratones Endogámicos mdx
4.
Mol Ther Methods Clin Dev ; 18: 664-678, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32775499

RESUMEN

Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.

5.
Mol Ther ; 28(3): 845-854, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981493

RESUMEN

Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.


Asunto(s)
Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/terapia , Expresión Génica , Terapia Genética , Distrofia Muscular de Duchenne/complicaciones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Administración Intravenosa , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo , Transducción Genética
6.
Methods Mol Biol ; 1937: 281-294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30706404

RESUMEN

Many diseases affect multiple tissues and/or organ systems, or affect tissues that are broadly distributed. For these diseases, an effective gene therapy will require systemic delivery of the therapeutic vector to all affected locations. Adeno-associated virus (AAV) has been used as a gene therapy vector for decades in preclinical studies and human trials. These studies have shown outstanding safety and efficacy of the AAV vector for gene therapy. Recent studies have revealed yet another unique feature of the AAV vector. Specifically, AAV can lead to bodywide gene transfer following a single intravascular injection. Here we describe the protocols for effective systemic delivery of AAV in both neonatal and adult mice and dogs. We also share lessons we learned from systemic gene therapy in the murine and canine models of Duchenne muscular dystrophy.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/administración & dosificación , Transducción Genética/métodos , Administración Intravenosa , Animales , Animales Recién Nacidos , Perros , Terapia Genética , Humanos , Ratones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
7.
JCI Insight ; 3(23)2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30518686

RESUMEN

Adeno-associated virus-mediated (AAV-mediated) CRISPR editing is a revolutionary approach for treating inherited diseases. Sustained, often life-long mutation correction is required for treating these diseases. Unfortunately, this has never been demonstrated with AAV CRISPR therapy. We addressed this question in the mdx model of Duchenne muscular dystrophy (DMD). DMD is caused by dystrophin gene mutation. Dystrophin deficiency leads to ambulation loss and cardiomyopathy. We treated 6-week-old mice intravenously and evaluated disease rescue at 18 months. Surprisingly, nominal dystrophin was restored in skeletal muscle. Cardiac dystrophin was restored, but histology and hemodynamics were not improved. To determine the underlying mechanism, we evaluated components of the CRISPR-editing machinery. Intriguingly, we found disproportional guide RNA (gRNA) vector depletion. To test whether this is responsible for the poor outcome, we increased the gRNA vector dose and repeated the study. This strategy significantly increased dystrophin restoration and reduced fibrosis in all striated muscles at 18 months. Importantly, skeletal muscle function and cardiac hemodynamics were significantly enhanced. Interestingly, we did not see selective depletion of the gRNA vector after intramuscular injection. Our results suggest that gRNA vector loss is a unique barrier for systemic AAV CRISPR therapy. This can be circumvented by vector dose optimization.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Edición Génica , Distrofia Muscular de Duchenne/genética , Animales , Dependovirus , Modelos Animales de Enfermedad , Femenino , Fibrosis , Terapia Genética , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Mutación , Miocardio/metabolismo , Miocardio/patología , Enfermedades Neuromusculares , ARN Guía de Kinetoplastida
8.
PLoS Curr ; 72015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25737807

RESUMEN

The mdx mouse is the most frequently used animal model for Duchenne muscular dystrophy (DMD), a fatal muscle disease caused by the loss of dystrophin. Mdx mice are naturally occurring dystrophin-null mice on the C57BL/10 (BL10) background. We crossed black mdx to the white FVB background and generated mdx/FVB mice. Compared to that of age- and sex-matched FVB mice, mdx/FVB mice showed characteristic limb muscle pathology similar to that of original mdx mice. Further, the forelimb grip strength and limb muscle (tibialis anterior and extensor digitorum longus) specific force of mdx/FVB mice were significantly lower than that of wild type FVB mice. Consistent with what has been reported in original mdx mice, mdx/FVB mice also showed increased susceptibility to eccentric contraction-induced force loss and elevated serum creatine kinase. Our results suggest that the FVB background does not dramatically alter the dystrophic phenotype of mdx mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...